Эмульсия представляет собой. Что такое эмульсия. Почему так важно соблюдать строгий порядок нанесения средств

Эмульсия - это смесь веществ. В ней один компонент состоит из мельчайших частиц, нерастворимых в другом. Этот ингредиент называется "дисперсной фазой". Другое вещество - дисперсная среда. В ней распределяется первая составляющая. "Эмульсия" - это термин, имеющий латинское происхождение. В переводе оно обозначает "выдаиваю, дою". Рассмотрим это понятие подробнее.

Общие сведения

Из любых двух жидкостей, которые не смешиваются и не реагируют химически, можно делать эмульсию. Одним из компонентов почти всегда является вода. Другое вещество состоит из слабополярных или нейтральных молекул (например жиры). Первая известная всем эмульсия - это молоко. Здесь частицы жира дисперсируются в воде. Размер мельчайших частиц дисперсной фазы составляет 1-50 мкм, поэтому эмульсии относятся к грубодисперсным системам. Низкоконцентрированные жидкости - неструктурированные. Смеси с высокой концентрацией - структурированные. По термодинамическим признакам нефтяная эмульсия - это нестабильная система. Размеры у капель фазы большие, и смесь будет неструктурированной.

Классификация

Тип получаемой эмульсии зависит от соотношения объемов фаз и их состава, от количества и природы эмульгатора, его химической активности, от способа и метода смешивания.

Химическое воздействие на эмульсию, давление, изменение состава может привести к инвертированию.

  1. Лиофильная эмульсия - это смесь, формирующаяся спонтанно, самопроизвольно. Она термодинамически считается устойчивой. Примером могут служить критически стабильные эмульсии при достижении предельной для смешивания фаз температуре. К этой же категории относят смазочные масла и жидкости для охлаждения.
  2. Лиофобная эмульсия - это смесь, образованная при механическом, акустическом или электрическом смешивании. Термодинамически они крайне неустойчивы. Такие смеси без эмульгаторов долго не существуют. Хорошие компоненты для них: ПАВ, высокомолекулярные, растворимые в воде вещества, твердые тела с высокой дисперсностью.

Получение

Есть две технологии производства эмульсии. Первый - путь мелкого дробления фракций. Второй - процесс пленкообразования с последующим разрывом на мелкие части. В первом варианте вещество медленно добавляется в дисперсную систему. При этом необходимо, осуществляя присоединение, постоянно на большой скорости перемешивать. В этом случае качество смеси будет зависеть от разных факторов. В частности, от скорости перемешивания, введения и объема диспергируемого вещества, его концентрации, температуры и кислотности среды. Второй метод - это процесс, при котором образуется пленка на поверхности другой фазы. Снизу нагнетается воздух. Пузырьки разрывают пленку на мелкие капли и перемешивают весь объем жидкости. В наше время начали вместо воздуха использовать вызывает дробление пленки на еще более мелкие части.

Разрушение смесей

С течением времени происходит самопроизвольный распад эмульсии. Бывают случаи, когда необходимо ускорить этот процесс и уменьшить концентрацию соединения. Данная необходимость актуальна, когда наличие высококонцентрированной эмульсии мешает процессу обработки материала или его правильному применению. Ускорить сам процесс уменьшения можно несколькими способами:


Применение

Спектр применения эмульсий в промышленности очень широк. В частности, соединения используют:

  1. При производстве маргарина и масла.
  2. В мыловарении.
  3. При изготовлении материалов из натурального каучука.
  4. В строительстве. Например, - это негорючее соединение.
  5. В сельском хозяйстве: пестициды - различные препараты, уничтожающие вредителей растений.
  6. Для медицинских целей: изготолвение различных лекарств, мазей, косметики.
  7. В живописи используют различные эмульсионные краски.
  8. Косметика для волос, эмульсии, защищающие поверхность волоса при окрашивании. Например, проявляющая эмульсия (это окислитель для краски).
  9. В используется смесь воды с нефтью, в которой диспергирование одной фазы жидкости в другую происходит мельчайшими капельками - глобулами.

Эмульсия - однородная по внешнему виду лекарственная форма, состоящая из взаимно нерастворимых тонко диспергированных жидкостей, для внутреннего, наружного или инъекционного применения.

Изготовление эмульсий регламентировано Государственной фармакопеей.

Эмульсии - микрогетерогенные системы. Размеры капель жидкости в эмульсиях колеблются от 0,1 до 50 мкм. В качестве дисперсной фазы может быть не только жидкость, но и газ.

Лекарственные вещества в лекарственной форме «Эмульсия» назначают с целью:

Замаскировать неприятный вкус или запах (например, масло касторовое, эфирных масел и др.);

Облегчить дозированный прием вязких густых жидкостей (винили на, масла касторового и др.);

Смягчить раздражающее действие некоторых лекарственных веществ (хлоралгидрата, бромидов, метилурацила и др.);

Обеспечить всасывание масляной фазы в желудке из эмульсий первого рода, ускорить гидролиз диспергированных жиров ферментами желудочно-кишечного тракта;

Ускорить всасывание масел в мелкодисперсном состоянии при энтеральном применении.

Эмульсии классифицируют:

1. По применению: для наружного применения (питательные и лечебные клизмы, очищающие эмульсии, косметическое молочко и др.); для внутреннего применения (микстуры); для инъекционного введения (эмульсии для па- рэнтерального питания).

2. По составу: простые (масло - липофильная жидкость, эмульгатор вода - гидрофильная жидкость); сложные.

3. По исходному материалу: масляные; семенные.

4. По концентрации: разбавленные (до 0,1% жидкой фазы, например, воды ароматные). Они могут быть стабильны без добавления стабилизатора, за счет высокой дисперсности и низкой Концентрации дисперсной фазы; концентрированные (более 5 % жидкой фазы) - большинство эмульсий, применяемых в Медицинской практике.

Для стабилизации концентрированных эмульсий требуется д0_ бавление стабилизатора (эмульгатора); высококонцентр1}, рованные эмульсии (более 70% жидкой фазы).

5. По типу, эмульсии первого рода (масло/вода) _ дисперсная фаза (масло или липофильная жидкость) в виде капелек распределена в водной (или гидрофильной) дисперсионной среде. Эмульсии этого типа более жидкие, по внешнему виду напоминают молоко. Применяют внутрь, наружно, инъекционно- эмульсии второго рода (вода/масло)-дисперсная фаза (вода или гидрофильная жидкость) в виде капелек распределена в масляной (или липофильной) дисперсной среде. Эмульсии этого типа более вязкие, густые. По внешнему виду напоминают мягкое сливочное масло. В основном применяют наружно: мази, линименты, кремы.

Эмульсии должны быть однородными, стабильными при хранении; устойчивыми к механическим воздействиям (не должны расслаиваться при центрифугировании с частотой вращения 1,5 тыс. мин-1); выдерживать воздействие высоких (до 50 °С) и низких температур; обеспечивать оптимальный фармакологический эффект.

В эмульсиях при хранении возможна коалесценция - процесс укрупнения и слияния капелек дисперсной фазы (потеря агрегативной устойчивости). Под агрегативной устойчивостью эмульсий, как и растворов защищенных коллоидов и суспензий, понимают способность дисперсной фазы (капелек жидкости или пузырьков газа) как можно дольше сохранять равномерное распределение в дисперсной среде. При слиянии капелек фазы в сплошной слой эмульсия расслаивается - разделяется на два несмешивающихся слоя и при взбалтывании не восстанавливается (потеря агрегативной и кинетической устойчивости).

Эмульсии расслаиваются под влиянием сильных электролитов, дегидратирующих веществ (этанол, глицерин дистиллированный, сироп сахарный и т. п.), веществ кислого и щелочного характера, факторов внешней среды, механического воздействия, температуры.

Учитывая отсутствие сродства дисперсной фазы к среде, получить устойчивые концентрированные и, особенно высококонцентрированные эмульсии, только за счет уменьшения размера частиц (как в случае суспензий гидрофильных веществ, имеющих сродство к среде) без добавления стабилизаторов не удается. По мере уменьшения частиц дисперсной фазы увеличивается свободная межфазная энергия (энергия Гиббса), которая при отсутствий сродства частиц дисперсной фазы к среде стремится к уменьШС" нию за счет слияния частиц (уменьшения удельной поверхности дисперсной фазы). Стабилизировать систему (уменьшить энергию Гиббса), сохранив высокую дисперсность частиц дисперсной фазы, удается снижением величины межфазного натяжения.

Эту роль выполняют ПАВ, молекулы которых адсорбируются на границе раздела фаз (жидкость/жидкость, жидкость/газ), образуя пленку из молекул эмульгатора, прочно обволакивающую частицы дисперсной фазы.

Молекулы эмульгатора располагаются строго определенным образом в зависимости от характера групп его молекул. Гидрофильные группы эмульгатора всегда ориентированы к водной фазе о погружены в нее. Неполярные участки молекул, например углеводородные цепи, всегда ориентируются к масляной фазе.

Подробнее о свойствах ПАВ см. гл. 5.

Задача изготовления агрегативно устойчивых эмульсий сводится в первую очередь к подбору эффективного эмульгатора, специфичного для данного типа эмульсии.

Вследствие неустойчивости эмульсии в аптеке изготавливают ex tempore.

Эмульсии - грубодисперсные системы из взаимно нерастворимых жидкостей. В таких системах одна из жидкостей (дисперсная фаза) взвешена в другой (дисперсионной среде) в виде капелек.

Чаще всего эмульсии состоят из воды и второй жидкости, которую принято называть «масло». Так, к числу «масел» относятся бензин, керосин, бензол, масла минеральные, животные, растительные и другие неполярные жидкости, которые гидрофобны.

Можно диспергировать гидрофобную жидкость в воде, и наоборот, возможно диспергировать воду в гидрофобной жидкости, Следовательно, принципиально могут быть эмульсии двух типов: масло в воде (сокращенно м/в), где дисперсной фазой будет масло, а дисперсионной средой - вода, и вода в масле (сокращенно в/м), когда дисперсная фаза - вода, дисперсионная среда - масло. Примером эмульсии первого типа может служить коровье молоко (эмульсия жира в гидрозоле белка), а эмульсии второго типа - различные медицинские мази (эмульсии воды в масле).

Эмульсии обычно получают механическим диспергированием - эмульгированием одной жидкости в другой сильным перемешиванием, встряхиванием, а в некоторых случаях с помощью ультразвука. В пищевой промышленности и кулинарной практике это выполняется на специальных взбивальных машинах.

Благодаря огромному увеличению поверхности раздела между двумя жидкостями эмульсия приобретает большой запас свободной поверхностной энергии Е и становится термодинамически неустойчивой, такая система будет стремиться самопроизвольно перейти в устойчивое состояние путем уменьшения запаса свободной поверхностной энергии. Этот самопроизвольный процесс может происходить или за счет уменьшения поверхностного натяжения или за счет уменьшения величины поверхности S, так как свободная поверхностная энергия связана с поверхностным натяжением и суммарной величиной поверхности уравнением Е = S.

Если понижение запаса свободной поверхностной энергии пойдет за счет уменьшения суммарной поверхности системы, это выразится в слиянии капелек жира, в уменьшении числа жировых капелек. Слияние капель эмульсии называют коалесценцией, она подобна коагуляции и быстро заканчивается расслоением системы на две отдельные жидкие фазы с минимальной поверхностью раздела. Такое слияние приводит к разрушению эмульсии.

Понижения поверхностной энергии можно добиться и за счет уменьшения поверхностного натяжения, которого можно достичь введением в систему какого-либо поверхностно-активного вещества, способного адсорбироваться на поверхности капелек эмульсии и препятствовать их слиянию. Подобные вещества, стабилизирующие эмульсию, называют стабилизаторами или эмульгаторами. При этом суммарная поверхность системы останется неизменной, а образующаяся эмульсия станет устойчивой.


Эмульгаторами концентрированных эмульсий, должны быть вещества, образующие на поверхности капелек эмульгируемой жидкости прочные адсорбционные пленки.

В зависимости от типа эмульсии следует брать гидрофильные или гидрофобные эмульгаторы той или иной степени дисперсности. Эмульгатор должен быть подобен той жидкости, которая образует дисперсионную среду.

Так, эмульсии типа м/в стабилизируются растворимыми в воде высокомолекулярными соединениями, например белками. Адсорбируясь на границе раздела фаз, они образуют в поверхностном слое сетчатые и гелеобразные структуры, создающие структурно-механический барьер, который препятствует объединению частиц дисперсной фазы.

Молекулы эмульгатора, содержащие в своем составе полярные и неполярные группы (например, мыла), в адсорбционных слоях ориентируются таким образом, что полярные концы их обращены к полярной жидкости, а неполярные - к неполярной (рис. 4), при этом понижается поверхностное натяжение.

Подобные оболочки из поверхностно-активных веществ на поверхности капелек эмульсии довольно прочны и упруги. При соударении частиц они, как правило, не разрушаются - эмульсии приобретают устойчивость.

Эмульгаторами для эмульсий как первого, так и второго типа также могут служить порошки, так называемые твердые эмульгаторы (рис.5).

Эмульсиями называются гетерогенные дисперсные системы, состоящие из взаимно нерастворимых, тонко диспергированных жидкостей, чаще всего воды и масла.

Эмульсии, как правило, стабилизированы эмульгаторами.

Существует два основных типа эмульсий - дисперсии масла в воде (м/в) - эмульсии первого рода и воды в масле (в/м) - эмульсии второго рода. Кроме того, существуют “множественные” эмульсии, в которых в каплях дисперсной фазы диспергирована жидкость, являющаяся дисперсионной средой, например, в/м/в или м/в/м (рис. 15.1).

Основной проблемой в технологии эмульсий является их физическая стабилизация. Эмульсиям свойственна неустойчивость, как дисперсным системам с развитой поверхностью раздела фаз и обла-


дающим избытком свободной поверхностной энергии. Различают следующие виды нестабильности:

Ш термодинамическую, или агрегативную, которая проявляется в виде коалисценции (слияния) капелек. Коалесценция протекает в две стадии: первая флокуляция (слипание), когда капельки дисперсной фазы образуют агрегаты; вторая - собственно коали- сценция, когда агрегировавшие капли соединяются в одну большую (рис. 15.2);

И кинетическую, которая проявляется вследствие осаждения (седиментации) или всплывания (кремаж) частиц дисперсной фазы под влиянием силы тяжести, согласно закону Стокса;

И обращение фаз (инверсия) - изменение типа эмульсии от в/м к м/в и наоборот. На инверсию влияют объемное соотношение фаз,


природа, концентрация и гидрофильно-липофильный баланс (ГЛБ) эмульгаторов, способ приготовления эмульсии.

Теориям стабилизации эмульсий посвящено большое количество работ, но для фармацевтической технологии практический интерес представляют труды академика П.А.Ребиндера и его школы. Он выдвинул и разработал теорию о влиянии двух факторов на стабильность системы структурно-механического барьера и термодинамической устойчивости.

При получении эмульсий резко возрастает поверхность раздела м/в и свободная межфазная энергия, что увеличивает агрегативную неустойчивость эмульсий. Однако с повышением дисперсности возрастает энтропия (превращение фаз) системы. Согласно второму закону термодинамики процессы, при которых энтропия системы возрастает, могут проходить самопроизвольно. Поэтому характер процессов, протекающих в эмульсиях (диспергирование или коале- сценция), будет зависеть от сбалансированности прироста удельной свободной межфазной энергии и энтропии.

Существует некоторое граничное значение межфазного натяжения (стщ), ниже которого повышение межфазной энергии, происходящее при диспергировании капель, полностью компенсируется повышением энтропии системы.

Такие эмульсии термодинамически устойчивы, диспергирование в них протекает самопроизвольно, без внешних механических сил за счет теплового движения молекул (при комнатной температуре) стт ~ 10"4Дж/м2. В соответствии с этим все дисперсные системы были разделены на две группы: лио- фильные, ДЛЯ которых С Стщ.

Лиофобные эмульсии агрегативно неустойчивы. Их стабильность следует понимать как время существования самих эмульсий. Их неустойчивость возрастает с уменьшением размеров частиц дисперсной фазы и с увеличением их числа в единице объема. Для придания агрегативной устойчивости лиофильным эмульсиям необходимо введение дополнительного стабилизирующего фактора. Значительная стабилизация, предотвращающая флокуляцию, коалесценцию и кинетическую неустойчивость, может быть достигнута, если в объеме дисперсионной среды и на границе раздела фаз возникает структурно-механический барьер, характеризующийся высокими значениями структурной вязкости.

Практически создать такой барьер можно за счет применения высокомолекулярных вспомогательных веществ, повышающих вязкость водной среды, например, различных производных целлюлозы, альгината натрия, а также посредством введения ПАВ. Вспомогательные вещества, стабилизирующие эмульсии, называют эмульгаторами (табл. 15.1).

Наиболее перспективные эмульгаторы для приготовления фармацевтических эмульсий

Эмульгатор Характеристика ГЛБ Примечание
Лецитин Амфолитный эмульгатор первого рода Рекомендуется для стабилизации эмульсий типа м/в для парентерального введения
МГД (моноглицериды дистиллированные) и МД (смесь моно- и диглицеридов высших жирных кислот) Эмульгаторы второго рода Рекомендуются для получения вязкопластичных эмульсий типа в/м
Натрия додецил сульфат Анионоактивный эмульгатор м/в 40
Пентол Эмульгатор второго рода 4,1 Совместно с эмульгатором первого рода рекомендуется для получения высокодисперсных самоэмульгирую- щихся систем типа м/в и в/м
Препарат ОС-20 13,4
Спирты синтетические.жирные фракции С16-С21 Эмульгатор второго рода 0,21 Совместно с эмульгатором первого рода рекомендуется для получения вязкопластич- ных систем типа м/в в производстве мягких лекарственных форм
Твин-80 Неионогенный эмульгатор первого рода 14,6
Эмульгатор Т-2 Эмульгатор второго рода 5,5 Совместно с эмульгатором первого рода рекомендуется для получения высокодисперсных самоэмульгирующихся и вязкопластичных эмульсий типа м/в и в/м
Эмульгатор №1 Комплексный

эмульгатор

Эмульсионные воски Комплексный

эмульгатор

Рекомендуется для получения вязкопластичных эмульсий типа м/в

При выборе эмульгаторов для фармацевтических эмульсий рекомендуется учитывать механизм их стабилизации, токсичность, величину pH, химическую совместимость с лекарственными веществами.

Для приготовления эмульсий надо использовать эмульгаторы, не обладающие неприятным вкусом, что ограничивает применение большинства синтетических ПАВ. Эмульгаторы, используемые для получения парентеральных эмульсий, не должны обладать гемолитическими свойствами.

Для стабилизации эмульсий эмульгаторы используют в широком диапазоне концентраций (0,1-25%).

По способности стабилизировать эмульсии м/в или в/м их можно разделить на эмульгаторы первого (м/в) и второго (в/м) рода. По химической природе эмульгаторы делятся на три класса: вещества с дифильным строением молекул, высокомолекулярные соединения, неорганические вещества. По способу получения выделяют синтетические, полусинтетические и природные (животного и растительного происхождения) эмульгаторы. Их можно разделить также на низкомолекулярные и высокомолекулярные. К высокомолекулярным относят желатин, белки, поливиниловые спирты, полисахариды растительного и микробного происхождения и др. На поверхности раздела фаз они образуют трехмерную сетку с определенными параметрами и стабилизируют эмульсии за счет создания структурно-механического барьера в объеме дисперсионной среды.

Наибольшее значение в качестве эмульгаторов имеют низкомолекулярные ПАВ. По способности к ионизации в воде их можно разделить на четыре класса: анионные, катионные, неионогенные и амфолитные.

Анионные ПАВ содержат в молекуле полярные группы и диссоциируют в воде с образованием отрицательно заряженных длинноцепочечных органических ионов, определяющих их поверхностную активность. Из анионных ПАВ для стабилизации фармацевтических эмульсий рекомендуются как наиболее перспективные мыла (соли высших жирных кислот) и натриевые соли сульфоэфиров высших жирных спиртов, например натрия лаурилсульфат. Свойства анионных ПАВ зависят от природы катиона. Натриевые, аммониевые и триэтаноламиновые соли растворимы в воде и служат эмульгаторами м/в, а мыла с такими катионами, как кальций, магний, алюминий и железо в воде не растворимы и являются эмульгаторами в/м.

Катионные ПАВ диссоциируют в воде с образованием положительно заряженных органических ионов, определяющих их поверхностную активность. Катионоактивные ПАВ, особенно соли четвертичных аммониевых и пиридиниевых соединений, обладают сильным бактерицидным действием. Их рекомендуется включать в лекарственные препараты в качестве консервантов и антисептиков. Наибольшее применение в фармации из этого класса ПАВ нашли бензалконий хлорид, цетилпиридиний хлорид, этоний.

Неионогенные ПАВ не образуют ионов. Растворимость их в воде определяется наличием полярных групп с сильным сродством к воде. К этому классу ПАВ относятся высшие жирные спирты и кислоты, сложные эфиры гликолей и жирных кислот, спены (эфиры высших жирных кислот и сорбита). Наиболее распространены такие неионогенные эмульгаторы м/в, как полиоксиэтиленгликолевые эфиры высших жирных спиртов, кислот и спенов. К неионогенным ПАВ относятся также жиросахара, которые в зависимости от строения молекул могут выполнять роль эмульгаторов с образованием эмульсий типа м/в или в/м.

Среди синтетических ПАВ менее токсичны неионогенные ПАВ, а катионные - самые токсичные; анионные ПАВ в целом занимают между ними промежуточное положение.

Амфолитные ПАВ содержат несколько полярных групп; в воде в зависимости от pH они могут ионизироваться с образованием либо длинноцепочечных анионов, либо катионов, что придает им свойства анионных или катионных ПАВ. Амфолитные ПАВ обычно содержат одновременно аминогруппу с сульфоэфирной, карбоксильной или сульфонатной группами. Типичными представителями этого класса ПАВ являются бетаин и лецитин.

При попадании ПАВ в воду полярные группы сольватируются, а неполярные алкильные цепи окружаются льдоподобной структурой воды. Изменение структуры воды в сторону увеличения ее кристалличности приводит к уменьшению энтропии системы. Поэтому возникает движущая сила, вытесняющая неполярную часть молекул ПАВ из воды. Этим обусловлены эффект адсорбции ПАВ на границе раздела фаз с понижением межфазной энергии и мицеллообразова- ние - фазовый переход из молекулярного в коллоидно-мицеллярное состояние, который происходит при критической концентрации мицеллообразования (ККМ). В зависимости от концентрации ПАВ форма мицелл меняется.

Свойства ПАВ зависят не только от общей величины гидрофильной и липофильной частей их молекул, но и от соотношения частей между ними, которое выражается через ГЛБ. ГЛБ был введен для

Групповые числа ГЛБ поверхностно-активных веществ
Гидрофильная группа Групповое Липофильная группа Г рупповое число
-04Na 38,7
-COOK 21,1
-COONa 19,1 -СН2-
Сульфонат 11,0 -СНз- -0,475
-N (третичный амин) 9,4 -СН-
Сложный эфир (сорбитановое кольцо)
Сложный эфир (свободный) 2,4 -(CG2-CH2-CH2-O-) -0,15
NCOOH 2,1
-ОН (свободная) 1,9
-О- 1,3
-ОН (сорбитановое кольцо) 0,5
-(СН2-СН2-О-) 0,33


характеристики неионогенных ПАВ (продуктов присоединения окиси этилена) и показывает для них 1/5 массового процентного содержания гидрофильной части в молекуле. ГЛБ 0 имеют неионные полностью липофильные вещества, а ГЛБ 20 присущ неионным полностью гидрофильным продуктам, например ПЭО. ПАВ с различной степенью оксиэтилирования имеют промежуточные значения ГЛБ, которые могут бьггь вычислены по формуле: ГЛБ = Е/5, где Е - процентное массовое содержание гидрофильной части.

Величина ГЛБ тесно связана со свойствами ПАВ и областью их применения. ПАВ с ГЛБ 1,5-3 - пеногасители, 3-6 - эмульгаторы в/м, 7-9 - смачиватели, 8-18 - эмульгаторы м/в, 13-15 - пенообразователи, 15-18 - солюбилизаторы.

Все методы определения ГЛБ можно разделить на расчетные, базирующиеся на молекулярной структуре ПАВ, и экспериментальные, основанные на измерении каких-либо свойств ПАВ, связанных с их ГЛБ, позволяющих его вычислить.

Из расчетных методов рекомендуется метод Дэвиса, согласно которому различные функциональные группы и сочетания атомов, входящие в молекулы ПАВ, имеют определенные гидрофильные коэффициенты “групповые числа” (табл. 15.2). Они положительны для гидрофильных групп и отрицательны для липофильных.

ГЛБ смеси ПАВ = XI ГЛБі + хг ГЛБг/ЮО,

где XI, хг - процентное содержание первого и второго ПАВ в смеси.

По системе ГЛБ для выбора оптимального состава эмульгирующей смеси рекомендуется использовать два ПАВ, одно из них с высоким значением ГЛБ - эмульгатор м/в, а другое с низкой величиной ГЛБ - эмульгатор в/м. Готовится ряд эмульсий, в котором при одинаковом содержании масляной фазы и суммарной концентрации двух эмульгаторов варьируется соотношение ПАВ, выражаемое через суммарную величину ГЛБ их смеси. При этом свойства эмульсий в ряду и их стабильность зависят от величины ГЛБ и строения молекул эмульгаторов.

Для получения стабильных эмульсий со сроком годности два года и более рекомендуется применять ПАВ, содержащие алкильные цепочки не менее чем с 16-18 атомами углерода. При этом необходимо соответствие длины алкильных радикалов эмульгаторов м/в и в/м.

Сильный стабилизирующий эффект при использовании двух эмульгаторов м/в и в/м вызван формированием в эмульсиях из молекул лиотропных жидких кристаллов.

Жидкокристаллическим (мезоморфным) называется такое состояние веществ, когда оно обладает структурными свойствами, промежуточными между свойствами твердого кристалла и жидкости. В кристаллах упорядочено как положение, так и ориентация молекул. В жидких кристаллах остается упорядоченной ориентация молекул, но отсутствует корреляция их положений. Молекулы могут взаимно перемещаться, но в мезофазах сохраняется анизотропия (характеризующая различие физических свойств по разным направлениям).

Если использовать одно гидрофильное ПАВ, то мезофазы образуются при достаточно высоких его концентрациях (свыше 30-50%), что мало приемлемо в технологии лекарств. Поэтому рекомендуется в систему с эмульгатором м/в ввести липофильный эмульгатор в/м. Они образуют совместные ассоциаты, в которых плотность упаковки алкильных цепей и анизотропия резко возрастают и увеличиваются с уменьшением суммарного ГЛБ ПАВ, т.е. с понижением ГЛБ возрастает тенденция к образованию жидкокристаллических ассо- циатов, которые при достаточной концентрации образуют в объеме дисперсионной среды эмульсий м/в пространственную сетку. Причем эта концентрация гораздо меньше, чем таковая при использовании только одного гидрофильного ПАВ.

Явление критического ГЛБ представляет собой частный случай образования на поверхности масляных глобул жидкокристаллического молекулярного слоя ПАВ, отделяющего их от водного окружения. Адсорбционный слой при этом является мезофазой, сложенной в глобулярную структуру, которая возможна только при определенных соотношениях ПАВ и при условии высокого ГЛБ эмульгатора в/м.

В лиофобные вязкопластичные эмульсии типа м/в рекомендуется включать в концентрациях 10-50% полярные гидрофильные растворители: пропиленгликоль, ПЭО-400, глицерин и др. Они разрыхляют мезофазы, уменьшая плотность упаковки молекул ПАВ. В результате объем, занимаемый мезофазой, увеличивается и структурная вязкость лиофобных вязкопластических эмульсий возрастает. В случае же эмульсий при критическом ГЛБ эти растворители рекомендуется включать в концентрации не более 10%. Уменьшение плотности упаковки адсорбционного слоя приводит к снижению критического ГЛБ, понижению сольватации, разрыву жидкокристаллического адсорбционного слоя и дестабилизации эмульсий. Гидрофобные растворители не только повышают структурную вязкость, но и понижают высыхание эмульсий м/в, увеличивают их термостабильность, снижают температуру кристаллизации дисперсионной среды. Дестабилизирующий эффект возрастает с увеличением неполярной части растворителя.

Способность эмульгаторов м/в стабилизировать эмульсии первого рода в смеси с высшими жирными спиртами за счет создания структурно-механического барьера была использована при создании таких эмульгаторов, как эмульсионные воски, представляющие собой сплав спиртов синтетических жирных первичных фракций С16-С21 с калиевыми солями фосфорнокислых эфиров указанных спиртов, а также эмульгатор №1 - сплав спиртов фракции С16-С21 с натриевыми солями сульфоэфиров этих же спиртов в соотношении примерно 30:70. Эти эмульгаторы рекомендуются для стабилизации эмульсионных мазей, кремов, пенообразующих аэрозолей. Однако они имеют ряд недостатков: при их получении не удается добиться строго определенного соотношения между спиртами и гидрофильными ПАВ, это соотношение не всегда оптимально для различных масляных фаз и эмульсий с различными лекарственными веществами; анионоактивные ПАВ несовместимы со многими лекарственными веществами. Поэтому при разработке фармацевтических эмульсий рациональнее пользоваться двумя эмульгаторами м/в и в/м, подбирая для них нужное соотношение и концентрацию применительно к конкретному лекарственному препарату. Причем, чем длиннее алкильные цепи эмульгаторов, тем больше вязкость и стабильность эмульсий м/в.

Кроме природы эмульгаторов, на стабильность эмульсий влияет ряд других факторов. В первую очередь, это природа дисперсионной среды и масляной фазы. Природа и полярность масляной фазы влияет на эмульгирующую способность ПАВ и стабильность эмульсий. Так, эмульсии, д исперсная фаза которых состоит из д линноцепочечных алканов или хотя бы содержит их в небольшом количестве, более устойчивы, чем эмульсии, содержащие короткоцепочечные алканы. Эмульсии с растительными телами менее стабильны, чем с минеральными.

Соотношение между маслом, водой и ПАВ сильно влияет на свойства эмульсий: их тип, реологические параметры и стабильность. При определенных соотношениях между ингредиентами эмульсий образуются так называемые микроэмульсии. Это прозрачные системы, содержащие сферические агрегаты масла или воды, диспергированные в другой жидкости и стабилизированные поверхностным натяжением пленок ПАВ, причем диаметры капель находятся в интервале от 10 до 200 нм. Микроэмульсии в отличие от обычных эмульсий являются термодинамическими стабильными системами и могут храниться годами без расслоения.

На стабильность эмульсий м/в влияет способ их приготовления. Для повышения их стабильности рекомендуется метод инверсии фаз. Оба эмульгатора при 70-75°С сплавляют с масляной фазой, добавляют часть горячей воды и эмульгируют, получая при этом эмульсию в/м. Затем приливают остальную воду, происходит инверсия фаз; эмульгирование продолжают, охлаждая эмульсию до 25°С.

Из технологических приемов, влияющих на структурно-механические параметры лиофобных вязкопластичных эмульсий, можно рекомендовать способ введения эмульгаторов. Наиболее вязкие и структурированные эмульсии получаются при д испергировании эмульгатора м/в и высших жирных спиртов в водной среде при 70-75°С с последующим введением масляной фазы при 60°С, эмульгированием и охлаждением эмульсии при перемешивании до 20-25°С.

ПЛАН ЗАНЯТИЯ 26.

Преподаватель : Чумаченко Е.В.

Тема: «Общая характеристика грубодисперсных систем, их классификация. Характеристика эмульсий».

Цели:

Образовательная: изучить свойства грубодисперсных систем и их классификацию.

Воспитательная: привитие интереса к дисциплине.

Развивающая: развитие умения использовать теоретические знания на практике.

Учебно-методическое обеспечение и оснащение: мультимедийное оборудование, компьютер.

Тип занятия – сообщение новых знаний.

Вид занятия – лекция – беседа (с использованием технических средств, презентации, химических опытов).

Методы обучения:

1. По источникам передачи и характеру восприятия информации -

наглядный (демонстрация презентации).

2. По характеру познавательной деятельности – объяснительно-иллюстративный.

Межпредметные связи физика.

Ход занятия.

Организационный момент.

Изучение нового материала:

1. Общие сведения о грубодисперсных системах.

2. Характеристика эмульсий.

Закрепление материала

Обсуждение материала по вопросам.

Домашние задание:

Общие сведения о грубодисперсных системах.

Системы, в которых размер частиц дисперсной фазы не менее 10~ 5 см, называются грубодисперсными. К ним относятся эмульсии, пены, порошки и суспензии, име­ющие более низкую степень дисперсности, чем коллоиды. Грубодисперсные системы по ряду свойств приближа­ются к микрогетерогенным системам, поэтому имеют много общего с коллоидами.

Подобно коллоидам они гетерогенны и обладают сильно развитой поверхностью раздела фаз. Наличие значительной удельной поверхности согласно второму закону термодинамики приводит эти системы к агрегативной неустойчивости. Поэтому агрегативную устойчи­вость таким системам можно придать добавлением стабилизатора, который адсорбируется на частицах дисперс­ной фазы.

Из-за отсутствия броуновского движения эмульсии, пены и суспензии кинетически неустойчивы. В них на­блюдается или оседание частиц под влиянием сил тя­жести (когда плотность вещества частиц больше плот­ности среды), или всплывание частиц (если плотность вещества частиц меньше плотности среды).

Грубодисперсные системы широко распространены в природе и применяются в практической деятельности че­ловека. Особенно важное значение имеют они в техноло­гии приготовления пищи, ибо большинство кулинарных изделий или полуфабрикатов являются эмульсиями, по­рошками, пенами или суспензиями.

Характеристика эмульсий.

Строение и получение эмульсии. Эмульсии - гетеро­генные системы из взаимно нерастворимых жидкостей. В таких системах одна из жидкостей (дисперсная фаза) извешена в другой (дисперсионной среде) в виде ка­пелек.

Чаще всего эмульсии состоят из воды и второй жид­кости, которую принято обозначать как «масло». Так, к числу «масел» относятся бензин, керосин, бензол, масламинеральные, животные, растительные и другие неполярные жидкости.

Можно диспергировать гидрофобную жидкость в во­де, например приготовить эмульсию бензола в воде. Вполне возможно диспергировать и воду в бензоле и получить при этом эмульсию воды в бензоле. Следователь­но, принципиально могут быть эмульсии двух типов: масло в воде (сокращено м/в), где дисперсной фазой будет масло, а дисперсионной средой - вода, и вода в масле (сокращено в/м), когда дисперсная фаза - вода, дисперсионная среда - масло. Примером эмульсии первого типа может служить коровье молоко (эмульсия жира в гидрозоле белка), а эмульсии второго типа - природная нефть, различные медицинские мази (эмульсии воды в масле).

Эмульсии обычно получают механическим диспергированием (эмульгированием) одной жидкости в другой.

Эмульгируемые жидкости сильно перемешивают, встряхивают или подвергают вибрационному воздействию с помощью мешалок, коллоидных мельниц, ультразвука. В кулинарной практике это выполняется на специальных взбивальных машинах или иногда вручную различными взбивалками.

Благодаря огромному увеличению поверхности разде­ла между двумя жидкостями эмульсия приобретает боль­шой запас свободной поверхностной энергии Е и стано­вится термодинамически неустойчивой. Согласно второму закону термодинамики такая система будет стремить­ся самопроизвольно перейти в устойчивое состояние пу­тем уменьшения запаса свободной поверхностной энер­гии. Этот самопроизвольный процесс может происходить или за счет уменьшения поверхностного натяжения σ, или за счет уменьшения величины поверхности S, так как свободная поверхностная энергия связана с поверхност­ным натяжением и суммарной величиной поверхности уравнением E=σS.

Если понижение запаса свободной поверхностной энергии пойдет за счет уменьшения суммарной поверх­ности системы, это выразится в слиянии капелек жира, в уменьшении числа жировых капелек. Слияние капель эмульсии называют коалесценцией, она подобна коагу­ляции и быстро заканчивается расслоением системы на две отдельные жидкие фазы с минимальной поверх­ностью раздела. Такое слияние приводит к разрушению эмульсии. Следовательно, подобно коллоидам, эмульсии являются агрегативно неустойчивыми системами.

Понижения поверхностной энергии эмульсии можно добиться уменьшением поверхностного натяжения. Это­го можно достичь введением в систему какого-либо по­верхностно-активного вещества, способного адсорбиро­ваться на поверхности капелек эмульсии и препятство­вать их слиянию. Подобные вещества, стабилизирующие эмульсию, называют стабилизаторами или эмульгатора­ми . При этом суммарная поверхность системы остается неизменной, а образующаяся эмульсия становится агре­гативно устойчивой.

К разбавленным эмульсиям относятся системы, в ко­торых объемная доля дисперсной фазы менее 1%. Они устойчивы без специальных эмульгаторов. Устойчивость разбавленных эмульсий объясняется довольно малыми размерами капелек жидкости и незначительной концен­трацией этих систем.

В концентрированных эмульсиях объемная доля дис­персной фазы от 1 до 74%. Увеличение концентрации приводит к понижению агрегативной устойчивости, ибо увеличивается вероятность столкновения, а следователь­но, и коалесценция капель. Поэтому для повышения аг­регативной устойчивости концентрированных эмульсий вводят эмульгатор, который, адсорбируясь на границе раздела двух жидкостей, уменьшает поверхностное на­тяжение. Образующиеся на поверхности капелек эмуль­гированной жидкости прочные адсорбционные пленки препятствуют коалесценция. Система становится агрегативно устойчивой. В зависимости от типа эмульсий следует брать гидрофильные или гидрофобные эмульга­торы той или иной степени дисперсности.

Эмульгатор должен быть подобен той жидкости, ко­торая образует дисперсионную среду. Так, эмульсии типа м/в стабилизируются растворимыми в воде высоко­молекулярными соединениями, например белками или водорастворимыми гидрофильными мылами (олеатом натрия и вообще мылами щелочных металлов). Эмульга­торами при получении эмульсии типа в/м служат высоко­молекулярные вещества, нерастворимые в воде, но хоро­шо растворимые в углеводородах (каучук, смолы и др.), а также нерастворимые в воде мыла многовалентных ме­таллов.

В адсорбционных слоях молекулы эмульгатора, содер­жащие полярные и неполярные группы (мыла, белки), ориентируются полярными концами к полярной жидкос­ти, а неполярными к неполярной. На поверхности капе­лек жидкости в эмульсиях типа м/в и в/м будет наблю­даться противоположная ориентация молекул таких эмульгаторов.

Подобные оболочки из поверхностно-активных ве­ществ на поверхности капелек эмульсии довольно проч­ны и упруги. При соударении частиц они, как правило, не разрушаются - эмульсии приобретают устойчивость.

Кроме высокомолекулярных соединений и мыл эмульгаторами для эмульсий как первого, так и второго типа могут служить порошки, так называемые твердые эмуль­гаторы. Однако они менее эффективны, чем мыла и высокополимеры. Порошки должны быть высокодисперсными и обязательно должны лучше смачиваться той жидкостью, которая служит дисперсионной средой; в этом случае большая часть твердых частиц будет на­ходиться с внешней, наружной стороны капелек, образуя оболочки высокой прочности, которые предохраняют их от коалесценции при столкновениях. Если же частицы порошка лучше смачиваются жидкостью, которая пред­ставляет собой дисперсную фазу, то большая часть каждой частицы окажется втянутой внутрь капель, поверх­ность капелек эмульсии окажется незащищенной, и та­кие эмульсии будут коалесцировать. Поэтому гидрофильные порошки, например мука, мел, оксид же­леза (III), глина, стабилизируют эмульсии типа м/в, тогда как сажа и другие гидрофобные порошки стабили­зируют эмульсии типа в/м.

Высококонцентрированные эмульсии с концентрацией дисперсной фазы более 74% называют желатинирован­ными . В подобных эмульсиях капельки дисперсной фазы сильно деформированы. Из шариков они превращаются в многогранники, последние могут быть плотнее упако­ваны. Поэтому высококонцентрированные эмульсии мо­гут содержать дисперсной фазы до 99% . Дисперсионная среда в таких эмульсиях превращается в тонкие пленки, разделяющие дисперсную фазу на многогранники. Желатированные эмульсии твердообразны, сохраняют свою форму, не растекаются. Примером мо­гут служить сливочное масло, маргарин, майонез, гус­тые кремы.

Разрушение эмульсий. Во многих случаях разрушение эмульсии - деэмульгирование - может быть не менее важным, чем их образование. Деэмульгирование сводит­ся к коалесценции эмульсии, т. е. к расслаиванию ее на свободные жидкие фазы. Разрушение эмульсий может быть достигнуто следующими способами:

1) химическим разрушением защитных пленок соот­ветствующими веществами, например разрушение серной кислотой эмульгатора молока при определении его жирности;

2) разрушением защитных пленок механическим воз­действием , например, при сбивании сметаны и сливок для получения масла (здесь де эмульгирование сопровож­дается концентрированием, т. е. образованием желатини­рованной эмульсии);

3) термическим разрушением - расслоением эмуль­сий при нагревании ; при этом уменьшается адсорбция эмульгатора и увеличивается число столкновений капе­лек, что ведет к их слиянию. Такое разрушение (расслое­ние) эмульсий наблюдается при длительном кипячении соусов, при изготовлении топленого масла. Разрушение эмульсий происходит и при понижении температуры - вымораживании. Например, при хранении майонеза ниже -15° С замерзает дисперсионная среда, что при последующем оттаивании ведет к его разрушению.

Значение эмульсий . Эмульсии широко распростране­ны в природе (сырая нефть, млечный сок растений-кау­чуконосов). Эмульсии используются и образуются при многих производственных процессах. Эмульсиями явля­ются разнообразные продукты питания; молоко, сливоч­ное масло, маргарин, сливки.

Молоко - это полидисперсная система, компоненты которой находятся в различной степени дисперсности. В теплом молоке жир находится в эмульгированном со­стоянии, а белковые вещества и часть солей - в коллоид­ном, другая часть солей в виде истинных растворов. При стоянии молока образуется слой концентрированной эмульсии - сливки. Для повышения устойчивости его гомогенизируют. В процессе гомогенизации крупные жи­ровые капельки молока уменьшаются в несколько раз. Такое гомогенизированное молоко очень устойчи­во и не образует слоя сливок в течение нескольких ме­сяцев.

Из молока изготовляют сливочное масло и маргарин. Маргарин представляет собой эмульсию типа в/м, а сли­вочное масло - сложную структурированную эмульсию, содержащую элементы обоих типов эмульсии м/в и в/м в разных соотношениях.

Велико значение эмульсий и эмульгирования в кули­нарной практике. Физиология питания ставит перед тех­нологией приготовления пищи задачу не только увели­чить усвояемость пищи, но и уменьшить энергетические затраты на ее усвоение и облегчить течение биохимических реакций в пищеварительном тракте. С этой точки зрения имеет большое значение, например, эмульги­рование жиров в кулинарной практике. В качестве примера рассмотрим особенности приготовления майо­незов.

Дисперсионная среда в этих эмульсиях - вода желт­ков и уксуса, дисперсная фаза - растительное масло. Эмульгаторами служат лецитин и виттелин желтка и белки порошка горчицы. Жира в майонезе содержится 75%. Он раздроблен на мельчайшие шарики. При ручном взбивании размер их составляет 1,5-2 10 -3 см, а при машинном - от 10 -4 до 4 10 -4 . В 1 г соуса содержится до 1 10 12 жировых шариков. На такое раз­дробление жира приходится затрачивать значительную работу. Если бы жир входил в пищу неэмульгированным, то эту работу должен был бы выполнять организм человека. Кроме того, если поверхность 1 см 3 масла равна всего 6 см 2 , то в майонезе она достигает 60000 см 2 . При таком увеличении поверхности во много раз облег­чается реакция между жирами и водой под действием ферментов пищеварительного тракта. Чем мельче жировые шарики, тем устойчивее полу­чается эмульсия. Однако большая степень раздробления жира (дисперсность) в соусах типа майонез играет и отрицательную роль.

Большая поверхность приводит к ускорению процессов окисления и прогоркания жиров под действием света и кислорода. Поэтому майонез необ­ходимо хранить в темном месте и в герметический таре.

Нежелательным является эмульгирование жира в процессе варки мясных бульонов (обычно при сильном кипении), так как эмульгированные жиры легко гидролизуются (омыляются) и выделяющиеся жирные кислоты придают бульонам вкус сала и запах мыла.

Публикации по теме